1.- La portada principal de la Iglesia de la Magdalena es un polígono irregular formado por dos figuras geométricas claramente diferenciadas (un rectángulo y un triángulo) uno de los lados iguales del triángulo isósceles imaginamos que mide 3m, lo otros dos has de averiguarlos tú.
Sabemos también que el lado común que divide el triángulo isósceles en 2 triángulos rectángulos es de 2m y que 1 de los lados del rectángulo mide lo mismo que uno de los lados iguales del triángulo.
Con los datos obtenidos calcula el perímetro y el área de este polígono irregular.
Para hallar cuánto mide la base del polígono debemos medir la base del rectángulo. Como no nos dio tiempo a medirla voy a suponer que mide 5m.
El perímetro es la suma de todos los lados
P = 3 + 3 + 3 + 3 + 5 = 17 m
Para hallar el área debemos dividir el polígono en dos figuras (rectángulo y triángulo), hallar las áreas por separado y sumarlas.
Área del triángulo = b · h : 2 = 5 · 2 : 2 = 5m2
Área total del polígono = 15 + 5 = 20m2
2.- ¿Sabrías calcular la longitud total de todas las circunferencias del rosetón teniendo en cuenta que el radio de la primera, más interna, es de 1,25m y que la separación entre las circunferencias es de 3cm?¿Y el área del círculo interno?
Para hallar la longitud de cada circunferencia hay que multiplicar el diámetro (radio + radio) por el nº PI. Hay que sumar 6cm al diámetro por cada circunferencia (es decir 3cm por cada lado)
Para averiguar el área del círculo interno hay que multiplicar el nº PI por el radio al cuadrado
No hay comentarios:
Publicar un comentario